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Abstract 
 

The Predictive Capability Maturity Model (PCMM) is a new model that can be used to 
assess the level of maturity of computational modeling and simulation (M&S) efforts. 
The development of the model is based on both the authors’ experience and their analysis 
of similar investigations in the past. The perspective taken in this report is one of judging 
the usefulness of a predictive capability that relies on the numerical solution to partial 
differential equations to better inform and improve decision making. The review of past 
investigations, such as the Software Engineering Institute’s Capability Maturity Model 
Integration and the National Aeronautics and Space Administration and Department of 
Defense Technology Readiness Levels, indicates that a more restricted, more inter-
pretable method is needed to assess the maturity of an M&S effort. 
The PCMM addresses six contributing elements to M&S: (1) representation and 
geometric fidelity, (2) physics and material model fidelity, (3) code verification, 
(4) solution verification, (5) model validation, and (6) uncertainty quantification and 
sensitivity analysis. For each of these elements, attributes are identified that characterize 
four increasing levels of maturity. Importantly, the PCMM is a structured method for 
assessing the maturity of an M&S effort that is directed toward an engineering 
application of interest. The PCMM does not assess whether the M&S effort, the accuracy 
of the predictions, or the performance of the engineering system satisfies or does not 
satisfy specified application requirements. 
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Executive Summary 
 
During the last few decades, modeling and simulation (M&S) has dramatically impacted how 
engineered systems are designed and how the performance, reliability, and safety of these 
systems are assessed. In this report, we are interested in M&S efforts that rely heavily on large-
scale computer codes to solve complex, nonlinear partial differential equations (PDEs) or 
integro-differential equations. M&S is commonly thought of as a general-purpose capability, but 
our perspective is of M&S directed toward a specified engineering application. Over the last two 
decades, the application of M&S to complex systems has conclusively demonstrated a number of 
elements that are crucial to predictive capability. Examples are the very large-scale risk 
assessment efforts applied to nuclear power reactors and the underground storage of nuclear 
waste. With continually increasing resources devoted to the development of an M&S capability 
and increasing reliance placed on M&S in decision making, it is necessary to develop improved 
methods for assessing the quality of M&S activities. 

We review efforts that have addressed closely related maturity assessment issues, including the 
Capability Maturity Model Integration (CMMI) developed by the Software Engineering Institute, 
the Technology Readiness Levels developed by the National Aeronautics and Space 
Administration (NASA) and the Department of Defense, NASA’s recent effort to develop an 
M&S interim standard, and various individual research activities. When we attempted to use 
these approaches, we concluded that their primary shortcoming was representational information 
quality, specifically, interpretability. That is, previous work lacked a clear and unambiguous 
meaning of what the information meant and how it should be used. 

We propose the Predictive Capability Maturity Model (PCMM), which is a structured method for 
assessing the level of maturity of M&S efforts. The purpose of the PCMM is to contribute to 
decision making for some engineering system applications. The six M&S elements used to assess 
maturity in this model are (1) representation and geometric fidelity, (2) physics and material 
model fidelity, (3) code verification, (4) solution verification, (5) model validation, and 
(6) uncertainty quantification and sensitivity analysis. These six elements are important in 
judging the trustworthiness and credibility of an M&S effort that deals primarily with the 
numerical solution of PDEs describing the engineering system of interest. 

Representation and geometric fidelity is directed toward the level of detailed characterization of 
the system being analyzed or specification of the geometrical features of that system.  

Physics and material model fidelity deals primarily with (1) the degree to which models are 
physics based, (2) the degree to which the models are calibrated, (3) the degree to which the 
models are being extrapolated from the validation and calibration database to the conditions of 
the application of interest, and (4) the quality and degree of coupling of multiphysics effects that 
exist in the application of interest.  

Code verification focuses on (1) correctness and fidelity of the numerical algorithms used in the 
code relative to the mathematical model (the PDE model); (2) correctness of the source code; 
and (3) configuration management, control, and testing of software through SQE practices.  
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Solution verification deals with (1) assessment of numerical solution errors in the computed 
results and (2) assessment of confidence in the computational results as the results may be 
affected by human errors.  

Model validation concentrates on (1) thoroughness and precision of the accuracy assessment of 
the computational results relative to the experimental measurements; (2) completeness and 
precision of the characterization of the experimental conditions and measurements; and 
(3) relevancy of the experimental conditions, physical hardware, and measurements in the 
validation experiments compared to the application of interest. 

Uncertainty quantification and sensitivity analysis focuses on (1) thoroughness and soundness of 
the uncertainty quantification effort, including the identification and characterization of all 
plausible sources of uncertainty; (2) accuracy and correctness of propagating uncertainties 
through a computational model and interpreting uncertainties in the system response quantities of 
interest; and (3) thoroughness and precision of a sensitivity analysis to determine the most 
important contributors to uncertainty in system responses. 

Each of the six elements is assessed with respect to descriptive characteristics that are divided 
into four levels (0, 1, 2, and 3), as follows: level 0, little or no assessment of accuracy and 
completeness and highly reliant on personal judgment and experience; level 1, some informal 
assessment of accuracy and completeness, and some assessment has been made by an internal 
peer review group; level 2, some formal assessment of accuracy and completeness, and some 
assessments have been made by an external peer review group; and level 3, formal assessment of 
accuracy and completeness, and essentially all assessments have been made by an independent, 
external peer review group.  

This maturity scale assesses the maturity of an M&S effort, or process, directed toward an 
engineering system of interest. The scale, by itself, does not assess whether the M&S effort, the 
accuracy of the predictions, or the performance of the engineering system satisfies a set of 
imposed requirements. We believe the summary information in the PCMM table will prove 
beneficial in a number of environments, for example: 

• Conducting a PCMM assessment and sharing it with interested parties and stakeholders 
engenders discussions that would not have occurred without the assessment. Such 
communication is a highly significant consequence of an M&S maturity assessment.  

• By using the PCMM over time, progress in the M&S effort can be tracked. This is useful 
for M&S managers, decision makers using the results of the M&S effort, and M&S 
funding sources to determine progress or value added over time. 

We also discuss aggregating PCMM scores, for example, from multiple subsystems. Although 
we recommend that PCMM scores not be aggregated, our experience with using the PCMM 
shows that various pressures, such as high-level M&S maturity reviews, require some type of 
compression of PCMM scoring. We recommend a summary method that always maintains a 
minimum value, an average value, and a maximum value through any aggregation process. We 
conclude the report by explaining how PCMM scores are only part of the information that should 
be considered by decision makers concerned with engineering systems. 
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1. Introduction 
During the last few decades, modeling and simulation (M&S) has dramatically impacted how 
engineered systems are designed and how the performance, reliability, and safety of these 
systems are assessed.The role of M&S is particularly important in designing and assessing the 
performance of high-consequence systems, such as those that model the operations of nuclear 
power plants, the long-term underground storage of nuclear waste, and the safety of nuclear 
weapons. Simulations of high-consequence systems must demonstrate exceptionally high levels 
of quality in terms of both credibility, and interpretability. For example, the results produced by 
the simulations must be believable and presented in a way that enhances understanding. 
Similarly, the M&S efforts of which these simulations are a part must be characterized in a way 
that concisely captures the activities that were accomplished to generate the simulation results. 
Here, we are interested in M&S efforts that rely heavily on large-scale computer codes to solve 
complex, nonlinear partial differential equations (PDEs) or integro-differential equations. 
Although M&S has made great strides during the last few decades, we believe the quality and 
maturity of the assessment procedures for all contributing elements to M&S are still in the early 
stages of development. In contrast, for example, procedures developed to assess the 
interpretability and maturity of experimental-measurement uncertainty estimation are of a much 
higher state of development than analogous procedures in M&S.  

1.1  The Value of M&S 

M&S provides value for engineered systems in various ways. For example, M&S can 

• decrease the time it takes to get a new product to market, 

• improve optimization of a system’s performance prior to production of that system, 

• potentially reduce the cost of the traditional test-break-fix engineering design cycle, and 

• provide an ability for assessing the reliability and safety of a system in environments and 
failure-mode conditions that cannot be tested. 

The most common theme underlying the value of M&S in the example given above is its ability 
for prediction, i.e., the ability to forecast system responses under specific conditions of the 
system and the environment. The ability for prediction is usually referred to as predictive power 
in scientific theory. In science, predictive power commonly deals with the ability of the 
underlying theory to be falsified by experimental observations, e.g., the predictive power of 
Newtonian theory is less than the predictive power of general relativity theory. In engineering, 
we believe the more appropriate term is predictive capability because here we are typically 
concerned with engineering issues, not with the philosophical concept of “truth” as in science. 
Some engineering issues of concern are (1) the usefulness of predictions to better inform and 
improve decision making and (2) the adequacy of predictions to meet accuracy requirements for 
system responses of interest. 

Some view predictive capability as entirely focused on the level of fidelity of the physics 
modeled in the computational simulation. For example, we have heard it said, “My simulation 
has higher fidelity physics incorporated than your simulation; and, as a result, it must have 
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higher predictive capability.” We flatly reject such an assertion. Based on the last two decades of 
experience, M&S applied to complex systems has conclusively demonstrated that a number of 
elements, including physics modeling fidelity, are crucial to predictive capability. Additional 
elements critical to predictive capability have been identified in the very large-scale risk 
assessment efforts applied to nuclear reactors and the underground storage of nuclear waste [1-
7]. These efforts, among others, have demonstrated the combined importance of diverse 
elements, such as software quality engineering (SQE), estimation of numerical solution error, 
model validation activities, uncertainty quantification, and sensitivity analyses. Large-scale 
analyses of high-consequence systems can withstand harsh technical scrutiny only if a number of 
contributing elements to predictive capability are formally employed and assessed.  

In a similar vein, some have also expressed the view that predictive capability should be centered 
on the quality of the computational scientists involved. For example, we have heard it said, “I 
have such confidence in this scientist that whatever simulation he/she produces is indisputably 
trustworthy.” No one would argue against the extraordinary value added by the quality and 
experience of the computational scientists involved. In large-scale analyses of high-consequence 
systems, however, it should be obvious that these rare individuals cannot carry the weight of the 
entire analysis. Many fields, particularly SQE, have learned, many times the hard way, that 
large-scale projects are critically reliant on process planning and management of all the elements 
contributing to the quality of the product. With continually increasing resources devoted to the 
development of predictive capability, as well as the increasing reliance on M&S in decision 
making, improved methods must be developed for assessing the quality of the elements of M&S.  

1.2  Outline of the Report 

Section 2 presents a detailed review of the literature, describing past efforts to measure the 
maturity and credibility of software and hardware development processes and products. These 
efforts include the Capability Model Maturity Integration (CMMI) developed by the Software 
Engineering Institute to measure the maturity of software product development and business 
processes; the Technology Readiness Levels (TRLs) developed by the National Aeronautics and 
Space Administration (NASA) and the Department of Defense (DoD) to assess the maturity of a 
technology; individual research activities that address certain M&S elements; and a NASA-
developed interim standard that proposes two scales for assessing the credibility of M&S results.  

Section 3 discusses four groups of elements that have been identified in the literature as 
contributors to M&S: (1) physics modeling fidelity, (2) code verification, (3) solution 
verification, and (4) model validation and uncertainty quantification. The first three groups of 
elements are described from a broad M&S perspective. The fourth group of elements is 
described in more detail because of the breadth and complexity of the topics of model validation 
and uncertainty quantification. The discussion explains how we have restricted our perspective 
and the definitions of these topics to improve the interpretability of our maturity assessment of 
predictive capability. We define a four-point ordinal scale that can be used to measure the level 
of maturity of each contributing element and to give the general characteristics that are required 
for each level. 

Section 4 discusses the purpose, construction, and uses of the proposed PCMM. The PCMM is a 
structured method for assessing the level of maturity of an M&S effort that is intended to 



 
 

 
12 

contribute to the decision making for some engineering system application. We separate the four 
groups of contributing elements to M&S discussed in Section 3 into six elements: 
(1) representation and geometric fidelity, (2) physics and material model fidelity, (3) code 
verification, (4) solution verification, (5) model validation, and (6) uncertainty quantification and 
sensitivity analysis. Each of these elements is assessed with respect to descriptive characteristics 
that are divided into four levels (0, 1, 2, and 3) of maturity. Brief descriptions of the elements at 
each level of maturity are given in a table consisting of 24 cells. More detailed descriptions of 
the elements at each maturity level are given within the text. 

Section 5 focuses on two important and practical topics: aggregation of the PCMM scores and 
use of the PCMM to improve risk-informed decision making. We recommend that PCMM scores 
not be aggregated, but our experience with using the PCMM indicates that various pressures, 
such as high-level reviews of M&S maturity, require some type of compression of the PCMM 
scoring. We recommend a summary method that always maintains a minimum value, an average 
value, and a maximum value through any summarization process. With respect to improving 
risk-informed decision making, we illustrate how PCMM scores are only part of the information 
that should be considered by decision makers concerned with engineering systems. 
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2. Review of the Literature 
Over the last decade, a number of researchers have investigated how to measure the maturity and 
credibility of software and hardware development processes and products. Probably the best-
known procedure for measuring the maturity of software product development and business 
processes is the Capability Maturity Model Integration (CMMI). The CMMI is a successor to the 
Capability Maturity Model (CMM). Development of the CMM had been initiated in 1987 to 
improve software quality. For an extensive discussion of the framework and methods for the 
CMMI, see Refs. [8-11]. The CMMI, and other models discussed in this report, recognize the 
value of measuring the maturity (i.e., some sense of quality) of a process to do one or more of the 
following: 

• Improve identification and understanding of the elements of the process 

• Determine the elements of the process that may need improvement so that the intended 
product of the process can be improved 

• Determine how time and resources can best be invested in elements of the process to 
obtain the maximum return on the investment 

• Better estimate the cost and schedule required to improve elements of the process 

• Improve the methods of aggregating maturity information from diverse elements of the 
process to better summarize the overall maturity of the process 

• Improve the methods of communicating to the decision maker the maturity of the process 
so that better risk-informed decisions can be made 

• Measure the progress of improving the process so that managers of the process, 
stakeholders, and funding sources can determine the value added over time 

• Compare elements of the process across competitive organizations so that a collection of 
best practices can be developed and used 

• Measure the maturity of the process in relation to requirements imposed by the customer. 

The CMMI was developed by the Software Engineering Institute, a federally funded research 
and development center that is sponsored by the DoD and operated by Carnegie Mellon 
University. The latest release of the CMMI is CMMI for Development, (CMMI-DEV version 
1.2) [10-12]. The CMMI-DEV is divided into four process areas: engineering, process 
management, project management, and support [10]. The engineering process area is further 
divided into six subareas: product integration, requirements development, requirements 
management, technical solution, verification, and validation. At first blush, practitioners of M&S 
may jump to the conclusion that the subareas of verification and validation (V&V) are the same 
concepts as those developed in M&S [13-16]. However, V&V in the CMMI-DEV refer to 
concepts developed by the Institute of Electrical and Electronics Engineers (IEEE) for SQE [10] 
and are defined as follows: 

• Verification: Ensure that selected work products meet their specified requirements. 

• Validation: Demonstrate that a product or product component fulfills its intended use 
when placed in its intended environment. 
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The above definitions of V&V have proven to be of little utility in M&S. Consequently, the DoD 
and various engineering societies developed alternative concepts for V&V. 

Following very closely to the DoD definitions provided in Ref. [13], the American Institute of 
Aeronautics and Astronautics (AIAA) [14] and the American Society of Mechanical Engineers 
(ASME) [16] adopted the following definitions of V&V for M&S:[14, 16] 

• Verification: The process of determining that a model implementation accurately 
represents the developer’s conceptual description of the model and the solution to the 
model. 

• Validation: The process of determining the degree to which a model is an accurate 
representation of the real world from the perspective of the intended uses of the model. 

The AIAA and ASME definitions were also adopted by the Advanced Simulation and 
Computing (ASC) program of the U.S. Department of Energy National Nuclear Security 
Administration (NNSA) [17]. For a detailed discussion on the history of the development of the 
terminology from the perspective of the M&S communities, see Refs. [18-21]. 

A maturity measurement system that has its origins in risk management is the Technology 
Readiness Levels (TRLs) system pioneered by NASA in the late 1980s [22]. The intent of TRLs 
is to lower acquisition risks of high technology systems by more precisely and uniformly 
assessing the maturity of a technology. We do not review TRLs in detail in this document, but 
the interested reader can consult Ref. [23] for more information. TRLs consider nine levels of 
maturity in the evolution of technological systems. These levels are described by the DoD in Ref. 
[24] as follows:  

• TRL Level 1: Basic principles observed and reported.  

Lowest level of technology readiness. Scientific research begins to be translated into 
applied research and development. Examples might include paper studies of a 
technology’s basic properties. 

• TRL Level 2: Technology concept and/or application formulated.  

Invention begins. Once basic principles are observed, practical applications can be 
invented. The application is speculative, and there is no proof or detailed analysis to 
support the assumption. Examples are still limited to paper studies. 

• TRL Level 3: Analytical and experimental critical function and/or characteristic proof of 
concept.  

Active research and development is initiated. This includes analytical studies and 
laboratory studies to physically validate analytical predictions of separate elements of the 
technology. Examples include components that are not yet integrated or representative. 

• TRL Level 4: Component and/or breadboard validation in laboratory environment.  
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Basic technological components are integrated to establish that the pieces will work 
together. This is relatively “low fidelity” compared to the final system. Examples include 
integration of ad hoc hardware in a laboratory. 

• TRL Level 5: Component and/or breadboard validation in relevant environment.  

Fidelity of breadboard technology increases significantly. The basic technological 
components are integrated with reasonably realistic supporting elements so that the 
technology can be tested in a simulated environment. An example is “high-fidelity” 
laboratory integration of components. 

• TRL Level 6: System/subsystem model or prototype demonstration in a relevant 
environment.  
Representative model or prototype system, which is well beyond the breadboard tested 
for TRL 5, is tested in a relevant environment. This represents a major step up in a 
technology’s demonstrated readiness. Examples include testing a prototype in a high-
fidelity laboratory environment or in a simulated operational environment. 

• TRL Level 7: System prototype demonstration in an operational environment.  

Prototype is near or at planned operational system. This represents a major step up from 
TRL 6, requiring the demonstration of an actual system prototype in an operational 
environment with representatives of the intended user organization(s). Examples include 
testing the prototype in structured or actual field use. 

• TRL Level 8: Actual system completed and operationally qualified through test and 
demonstration.  
Technology has been proven to work in its final form and under expected operational 
conditions. In almost all cases, this TRL represents the end of true system development. 
Examples include developmental test and evaluation of the system in its intended or pre-
production configuration to determine if it meets design specifications and operational 
suitability. 

• TRL Level 9: Actual system, proven through successful mission operations.  

The technology is applied in its production configuration under mission conditions, such 
as those encountered in operational test and evaluation. In almost all cases, this is the last 
“bug fixing” aspect of true system development. An example is operation of the system 
under operational mission conditions. 

TRLs explicitly measure the quality of a technological product. The nominal specifications of 
TRLs as presented above are clearly aimed at hardware products, not software products. Smith 
[25] examined the difficulties in using TRLs for nondevelopmental software, including 
commercial and government off-the-shelf software and open sources of software technology and 
products. He concluded that significant changes in TRLs would need to be made before they 
would be useful for assessing the maturity of software. Clay et al. [26] recently attempted to 
adapt TRL specifications to M&S software maturity. One conclusion of their study was that the 
predictive capability dimensions, which are the focus of this report, are inevitably important in 
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adapting TRLs for M&S. Clay et al. concluded that significant changes would need to be made 
to the TRL specifications before the TRLs may prove useful in assessing M&S software 
maturity.  

A maturity assessment procedure that deals more directly with M&S processes than the CMMI 
and the TRLs was recently reported by Harmon and Youngblood [27, 28]. Their work focuses on 
assessing the maturity of the validation process for simulation models. The work takes the 
encompassing view of validation, as is uniformly taken by the DoD. By encompassing view, we 
mean that the DoD uses the term “validated model” to denote that the following three related 
issues have been addressed with regard to the accuracy and adequacy of the M&S results: 

• The system response quantities (SRQs) of interest produced by the model have been 
assessed for accuracy with respect to some referent. 

• An “intended use” domain is defined, and the model can, in principle, be applied over 
this domain.  

• The model meets the accuracy requirements for the “representation of the real world” 
over the domain of its intended use.  

These three issues are discussed in Section 3.4, Model Validation and Uncertainty 
Quantification. It should be noted here that the perspective of validation taken by the AIAA and 
the ASME is that the referent can only be experimentally measured data. The DoD does not take 
this restrictive perspective. Thus, the DoD permits the referent to be, for example, other 
computer codes and expert opinion. 

Harmon and Youngblood clearly state that validation is a process that generates information 
about the accuracy and adequacy of the simulation model as its sole product. They argue that the 
properties of information quality are defined by (a) correctness of the information, 
(b) completeness of the information, and (c) confidence that the information is correct for the 
intended use of the model. They view the validation process as using information from five 
contributing elements: (1) the conceptual model of the simulation, (2) verification results from 
intermediate development products, (3) the validation referent, (4) the validation criteria, and (5) 
the simulation results. The technique used by Harmon and Youngblood ranks each of these five 
elements into six levels of maturity, from lowest to highest: 

• We have no idea of the maturity. 

• It works, trust me. 

• It represents the right entities and attributes. 

• It does the right things, its representations are complete enough. 

• For what it does, its representations are accurate enough. 

• I’m confident this simulation is valid. 

Logan and Nitta [29] suggested several quantification techniques for M&S certification, 
particularly as the techniques relate to reliability, performance, and safety of the nuclear weapons 
stockpile. These authors discussed how V&V contribute to the decision process for resource 
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investment, through quantification of uncertainties at confidence for performance margin and 
reliability assessments. They also recognized the importance of a graded approach for assessing 
the maturity of V&V. Note that Logan and Nitta used the encompassing view of validation. They 
proposed ver (verification) and val (validation) meters, each with a 10-point scale to measure the 
maturity of V&V activities, respectively. Their ver meter has the following representative scale 
characteristics, from low to high maturity, to assess the maturity of a code:  

• It has a name.  

• It has a new name.  

• It has a user’s manual.  

• It is operated under version control.  

• Testing against the basic verification suite was initiated.  

• Ninety percent of the verification suite is completed.  

• Ninety percent of the elements of the code are verified.  

• Ninety percent of the material models are verified.  

• Ninety percent of the material contact models are verified.  

• Ninety percent of the physics coupling models are verified.  

• The code is fully verified.  

Logan and Nitta’s val meter has the following scale characteristics, from low to high maturity, 
for the code:  

• It runs first time step. 

• It runs to completion.  

• There is blind trust in the result. 

• Model results are calibrated to experiment.  

• A mesh-resolved solution is obtained.  

• A temporally-resolved solution is obtained.  

• Components and subsystem models are validated.  

• Input sensitivities are qualitatively correct.  

• System-level models are validated.  

• System-level models are validated under widely varying environments.  

• Predictive validation is attained with little calibration. 

• Model uncertainty is negligible and fully validated. 

Pilch et al. [30] proposed a framework for how M&S can contribute to the nuclear weapons’ 
Stockpile Stewardship Program. These authors referred to this framework as “stockpile 
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computing” and suggested that there are four key contributors to stockpile computing: qualified 
computational practitioners, qualified codes, qualified computational infrastructure, and 
appropriate levels of formality. As part of qualified codes, Pilch et al. described nine elements of 
stockpile computing:  

• Request for service  

• Project plan development 

• Technical plan development  

• Technical plan review  

• Application-specific calculation assessment  

• Solution verification  

• Uncertainty quantification  

• Qualification and acceptance  

• Documentation and archival  

For each of these elements, Pilch et al. described the key issues and the key evidence artifacts 
that should be produced. They also described four levels of formality that would generally apply 
over a wide range of stockpile-computing situations:  

• Formality appropriate for research and development tasks, such as improving the 
scientific understanding of physical phenomena 

• Formality appropriate for weapon-design support  

• Formality appropriate for qualification support, i.e., confidence in component 
performance is supported by M&S  

• Formality appropriate for qualification of components, i.e., confidence in component 
performance is heavily based on M&S  

Pilch et al. then constructed a table with rows corresponding to the nine elements and with 
columns corresponding to the four levels of formality. In each element of the table, the 
characteristics that should be achieved for a given element at a given level of maturity are listed. 

NASA recently released an interim standard that specifically deals with M&S as it contributes to 
decision making [31]. The primary goal of this interim standard is to ensure that the credibility of 
the results from M&S is properly conveyed to those making critical decisions, e.g., launch 
decisions for the Space Shuttle. The secondary goal is to assess whether the credibility of the 
M&S results meets the project requirements. This interim standard is intended to improve risk-
informed decision making for M&S as it is applied to operations, manufacturing, assembly, test 
and evaluation, design and analysis, and the prediction of natural phenomena. The interim 
standard will apply to NASA activities as well as to the activities of NASA contractors, and it is 
anticipated that a permanent standard will be released late in 2007. NASA’s interim standard 
proposes two scales for assessing the credibility of M&S results. Credibility scale A2 has seven 
contributing elements: 
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• Code verification 

• Solution verification 

• Validation 

• Predictive capability 

• Level of technical review 

• Process control 

• Operator and analyst qualification 

For each of these elements, the A2 scale defines four levels of credibility, or maturity:  

• Level 1, Research: Credibility established for model basics. 

• Level 2, Development: Credibility established for simulation process. 

• Level 3, Production: Credibility tested specifically for the current application. 

• Level 4, Rigorous: Credibility rigorously established for the current application. 

Credibility scale A3 has 15 contributing elements grouped into three categories: 

• M&S fits intended use: correct entities, functions and interactions, scope, scale, and detail 

• M&S is built well: verified code, numerical accuracy, validated outputs, uncertainty 
measurements, development process maturity, and various –ilities, such as usability and 
supportability 

• M&S is used correctly: problem defined, correctly set up, executed, and analyzed; 
analysis traceable to results, and operator/analysts qualified 

For each of these elements, the A3 scale uses the same four levels of credibility, or maturity, as 
the A2 scale. 

The final contribution to the literature reviewed comes from the field of information theory. If 
one agrees with the concept of Harmon and Youngblood [27, 28], as we do, that the product of 
M&S is information, then one must address the fundamental aspects of information quality. 
Wang and Strong [32] conducted an extensive survey of information consumers to determine the 
important attributes of information quality. Stated differently, they went directly to a very wide 
range of customers that use, act on, and purchase information to determine what were the most 
important qualities of information. Wang and Strong analyzed the survey results and then 
categorized the attributes into four aspects: 

• Intrinsic information quality: believability, accuracy, objectivity, and reputation 

• Contextual information quality: value added, relevancy, timeliness, completeness, and 
amount of information 

• Representational information quality: interpretability, ease of understanding, consistent 
representation, and concise representation 

• Accessibility information quality: accessibility and security aspects 
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If the user of the information is not adequately satisfied with essentially all of these important 
attributes, then the user could (a) make minimal use of the information for the decision at hand, 
(b) completely ignore the information, or (c) misuse the information, either intentionally or 
unintentionally. These outcomes range from wasting information (and the time and resources 
expended to create it) to a potentially disastrous result caused by misuse of the information. 
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3. Aspects of Predictive Capability 
As can be seen in the literature review, a number of similar elements have been identified as 
contributors to the M&S process. In this section, we identify and develop four groups that 
contain important contributing elements to M&S:  

• Physics modeling fidelity 

• Code verification 

• Solution verification 

• Model validation and uncertainty quantification 

Each of these four groups is defined for its minimal overlap, or dependency, between groups; 
i.e., each group contributes a separate type of information to the M&S process. In addition, these 
groups aid in identifying subtle, but important, conceptual issues related to the four aspects of 
information quality identified by Wang and Strong [32]. When we attempted to use the 
approaches discussed in the literature review, we concluded that the primary shortcoming was 
representational information quality, specifically, interpretability. That is, previous work, in our 
view, lacked a clear and unambiguous meaning of what the information meant and how it should 
be used. The primary reason for the problems we discovered was that previous work had not 
adequately segregated some of the underlying conceptual issues, particularly, what was being 
assessed? Was it the quality of the M&S process or the quality of the M&S results that was being 
assessed? Without improved interpretability, decision makers cannot properly use and act on 
information produced by M&S. 

All the approaches discussed in the literature review agree that some type of graded scale is 
needed to measure the maturity, or confidence, of each contributing element. The important topic 
of using a graded scale is also discussed in this section. 

3.1  Physics Modeling Fidelity 
It is well recognized that improvement in the fidelity of physics modeling has been the dominant 
theme pursued in most M&S directed toward engineering systems. Note that when we refer to 
“physics modeling,” we are using the term to include all chemical and biological modeling. 
Physics modeling fidelity in M&S is considered to have two primary aspects: 
(1) representational and geometric modeling fidelity and (2) physics modeling fidelity, per se.  

Representational and geometric modeling fidelity refers to the level of detail included in the 
spatial definition of all constituent elements of the system being analyzed. Note that when we 
refer to system, we mean any engineered or natural system entity, e.g., a subsystem, a 
component, or a part of a component. In M&S, the representational and geometric definition of a 
system is commonly specified in a computer-aided design or computer-aided manufacturing 
(CAD/CAM) software package. The traditional emphasis in CAD/CAM packages has been on 
dimensional, fabrication, and assembly specifications. As M&S has matured, CAD/CAM 
vendors are now beginning to address issues that are specifically important to engineering 
computational-analysis needs, e.g., mesh generation and feature definitions that are important to 
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various types of physics modeling. Even though some progress has been made that eases the 
transition from traditional CAD/CAM files to the construction of a computational mesh, a great 
deal of work still needs to be done. (Note that we will always refer to a “mesh,” but we also 
include in this term any type of discretization procedure of the computational domain.) Aside 
from geometry clean-up and simplification activities, which are directed at making CAD/CAM 
geometries useful in M&S, M&S has no process for verifying that the CAD/CAM geometries 
loaded into calculations are correct and consistent with the physics modeling assumptions. A key 
issue that complicates the mapping of CAD/CAM geometries to a geometry ready for 
construction of a computational mesh is that the mapping is dependent on the particular type of 
physics to be modeled and the specific assumptions in the modeling. For example, a change in 
material properties along the surface of a missile would be important to a structural dynamics 
analysis, but it may not be important to an aerodynamic analysis. As a result, the CAD/CAM 
vendors cannot provide a simple or algorithmic method to address the wide variety of feature 
definitions and nuances required for different types of physics models. The time-consuming task 
of such detailed mapping becomes the responsibility of professionals with different backgrounds, 
such as CAD/CAM package developers, computational scientists, and mesh-generation experts. 

The range of physics modeling fidelity can vary from empirical models that are based on the 
fitting of experimental data (empirical models) to what is typically called “first-principles 
physics.” The three types of models in this range are referred to here as fully empirical models, 
semi-empirical models, and physics-based models. Physical process models that are completely 
built on statistical fits of experimental data are fully empirical models. These fully empirical 
models typically have no relationship to physics-based principles. Consequently, the fully 
empirical models rest entirely on the calibration of responses to identified input parameters over 
a specified range and should not be used (extrapolated) beyond their calibration domain. A semi-
empirical model is partially based on physical principles and is highly calibrated by experimental 
data. An example of a semi-empirical model that has been heavily used in nuclear reactor safety 
is the control volume, or lumped parameter, model. Semi-empirical models typically conserve 
mass, momentum, and energy but at some relatively large physical scales relative to the system 
of interest. In addition, they rely heavily on fitting experimental data as a function of 
dimensional or nondimensional parameters, such as Reynolds or Nusselt numbers, to calibrate 
the models. Physics-based models typically pertain to modeling that is heavily reliant on partial 
differential or integro-differential equations that represent conservation of mass, momentum, and 
energy at very small length and time scales relative to the physical scales in the application of 
interest. Some physicists use the term first-principles, or ab initio, physics to mean modeling that 
starts at the atomistic or molecular level. These models, however, are rarely used in the M&S of 
engineering or natural systems. 

Another important aspect of physics modeling fidelity is the degree to which various types of 
physics are included and coupled in the mathematical model of the system and the environment. 
For fully empirical and semi-empirical models, strong assumptions are made to greatly simplify 
the physics considered, and little or no coupling of physics is included. For physics-based 
models, however, the modeling assumptions focus on what physical phenomena will be included 
and what will be ignored. As shown in Fig. 1, two basic approaches are used to couple the 
physics involved in the physical phenomena:  
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• a one-way causal effect, i.e., one physical phenomenon affects other phenomena, but the 
other phenomena do not affect the originating phenomenon; and  

• a two-way interaction, i.e., all physical phenomena affect all other physical phenomena.  

 

  

Figure 1: Example of Two Basic Types of Coupling of Physical Phenomena. 

In physics-based modeling, each physical phenomenon is typically modeled by a set of PDEs 
with boundary conditions (BCs) and initial conditions (ICs). In one-way coupling (Fig. 1a), the 
BCs for phenomenon 1 are specified by the environment of the system, i.e., one-way coupling, 
because the system does not change the environment. The BCs for phenomena 2 and 3 are 
determined by the physical processes modeled in phenomenon 1. In addition, the BCs of 
phenomenon 3 are determined by phenomenon 2. In two-way coupling (Fig. 1b), all phenomena 
in the system affect all other phenomena. This two-way interaction can be modeled as strong 
coupling, where two or more phenomena are modeled within the same set of PDEs, or as weak 
coupling, where the interaction between phenomena occur through BCs between separate sets of 
PDEs. 

3.2  Code Verification 

Recent work by Oberkampf and Trucano [20] argues that it is useful to segregate code 
verification into two activities, numerical algorithm verification and SQE, as shown in Fig. 2. 
Numerical algorithm verification addresses the mathematical correctness in the software 
implementation of all the numerical algorithms that affect the numerical accuracy of the 
computational results. The major goal of numerical algorithm verification is to accumulate 
evidence that demonstrates that the numerical algorithms in the code are implemented correctly 
and functioning as intended, i.e., they produce the expected convergence rate and correct 
solution to the specific PDE being tested [15, 33]. The emphasis in SQE is on determining 
whether or not the code, as part of a software system, is reliable (implemented correctly) and 
produces repeatable results on specified computer hardware and in a specified software 
environment [34-36]. Such environments include compilers, libraries, and so forth. Although 
there are many software system elements in modern computer simulations, we primarily focus on 
SQE practices applied to the source code associated with M&S. 
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Figure 2: Integrated View of Code Verification in M&S [20, 21]. 

Numerical algorithm verification is fundamentally empirical. Specifically, it is based on testing, 
observations, comparisons, and analyses of code results for individual executions of the code. It 
focuses on careful investigations of numerical aspects, such as spatial and temporal convergence 
rates, spatial convergence in the presence of discontinuities, independence of solutions to 
coordinate transformations, and symmetry tests related to various types of BCs. Analytical or 
formal error analysis is inadequate in numerical algorithm verification because the code itself 
must demonstrate the analytical and formal results of the numerical analysis. Numerical 
algorithm verification is usually conducted by comparing computational solutions with highly 
accurate solutions, which are commonly referred to as verification benchmarks. Oberkampf and 
Trucano [37] divided the types of highly accurate solutions into four categories (listed from 
highest to lowest in accuracy): manufactured solutions, analytical solutions, numerical solutions 
to ordinary differential equations, and numerical solutions to PDEs. See Refs. [15, 33] for a 
detailed discussion of manufactured solutions. 

SQE activities consist of practices, procedures, and processes that are primarily developed by 
researchers and practitioners in the computer science and software engineering communities. 
Conventional SQE emphasizes processes (management, planning, design, acquisition, supply, 
development, operation, and maintenance), as well as reporting, administrative, and 
documentation requirements. A key element, or process, of SQE is software configuration 
management, which is composed of configuration identification, configuration and change 
control, and configuration status accounting. As shown in Fig. 2, software quality analysis and 
testing can be divided into static analysis, dynamic testing, and formal analysis [34-36]. Dynamic 
testing can be further divided into such elements of common practice as regression testing, black 
box testing, and glass box testing. From an SQE perspective, Fig. 2 could be reorganized so that 
all types of algorithm testing categorized under numerical algorithm verification could be moved 
to dynamic testing. However, the computer science and software engineering communities have 
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shown little interest in development of the testing procedures listed under numerical algorithm 
verification. 

3.3  Solution Verification 

Solution verification commonly focuses on the quantitative estimation of the numerical accuracy 
of a given solution to a physics equation chosen in M&S. The primary numerical errors that are 
estimated in solution verification are due to (1) spatial and temporal discretization of PDEs and 
(2) iterative solution error resulting from a linearized solution approach to a set of nonlinear, 
coupled equations. The importance and difficulty of numerical error estimation has increased as 
the complexity of the physics and mathematical models has increased, e.g., mathematical models 
given by nonlinear PDEs with singularities and discontinuities.  

The two basic approaches for estimating the error in a PDE numerical solution are a priori and a 
posteriori error estimation techniques. An a priori approach only uses information about the 
numerical algorithm that approximates the partial differential operators and the given initial ICs 
and BCs. A priori error estimation is a significant element of classical numerical analysis for 
linear PDEs, especially those underlying finite element methods and finite volume methods [15, 
38-43]. An a posteriori approach can use all the a priori information as well as the 
computational results from previous numerical solutions, e.g., solutions using different mesh 
resolutions or solutions using different order-of-accuracy methods. During the last decade or so, 
it has become clear that the only way to achieve a useful quantitative estimate of numerical error 
in practical cases of nonlinear, complex PDEs is by using a posteriori error estimates. 

A posteriori error estimation has been performed primarily by using either Richardson 
extrapolation [15] or methods that are more sophisticated and based on finite element 
approximations [44, 45]. Richardson extrapolation uses solutions on a sequence of carefully 
constructed meshes with different levels of mesh refinement to estimate the spatial discretization 
error. This method can also be used on a sequence of solutions with varying time-step increments 
to estimate the temporal discretization error. Richardson’s method can be applied to any 
discretization procedure for differential or integral equations, e.g., finite difference, finite 
element, finite volume, spectral, and boundary element methods. As Roache [15] acknowledges, 
Richardson’s method produces different estimates of error and uses different norms than the 
traditional a posteriori error methods used in finite elements [40, 46]. 

It is well known in M&S that the accuracy and credibility of the results can also be contaminated 
or destroyed by human errors made in the preparation, processing, and interpretation of M&S 
data. Here, we are referring to errors, blunders, or mistakes made by the scientists dealing with 
the M&S data itself, not errors or approximations made in the formulation or construction of the 
mathematical model. Human errors can be very difficult to detect in large-scale M&S analyses of 
complex systems. Even in relatively small-scale analyses, human errors can go undetected if 
procedural or data-checking methods are not employed to detect possible errors. For example, if 
a system analysis contains tens of CAD/CAM files, perhaps hundreds of different materials, 
thousands of fasteners or welds, and tens of thousands of Monte Carlo simulation samples, 
human errors, even by the most experienced and careful practitioners, can occur. Given this 
situation and the clear expectation that M&S calculations will continue to become more 
complex, we will include the issue of human error as part of our category of solution verification. 
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3.4  Model Validation and Uncertainty Quantification 

In the literature review in Section 2 concerning the work of Harmon and Youngblood, it was 
briefly mentioned that the DoD [13, 27, 28] takes an encompassing view of the term validation, 
which includes the three issues mentioned. These issues relate to the accuracy and adequacy of 
the M&S capability for the intended use. In a number of publications, we have argued to separate 
these issues because they differ both conceptually and pragmatically [20, 21, 30, 47-52] It is our 
view, and the experience of many, that an encompassing view of validation commonly leads to 
misunderstandings, misinterpretation, and confusion between the presenter of the M&S 
validation results and the user. Consequently, the category of Wang and Strong named 
“representational information quality” [32] is often destroyed. The AIAA’s Guide for the 
Verification and Validation of Computational Fluid Dynamics Simulations also recognized this 
important conceptual difficulty and separated these issues [14]. 

Figure 3 depicts these three issues as follows [37]:  

• Quantification of the accuracy of the computational model results by comparing the 
SRQs of interest with experimentally measured SRQs 

• Use of the computational model, in the sense of interpolation or extrapolation of the 
model, to make predictions for conditions corresponding to the intended use of the model 

• Determination of whether the estimated accuracy of the computational model results, for 
the conditions of the intended use, satisfies the accuracy requirements specified for the 
SRQs of interest 

 

 
Figure 3: Three Aspects of Model Validation [37]. 
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As depicted in Fig. 3, issue 1 deals with assessing the accuracy of results from the model by 
comparisons with available experimental data. The assessment could be conducted for the actual 
system of interest at the actual operating conditions for the intended use of the system, or for 
simplified elements of the system. However, it is common that these data are not available for 
the complete system, and as a result, an accuracy assessment of the model is conducted on 
similar systems, on subsystems, or on components of subsystems. In M&S, we believe that 
model accuracy should be quantitatively estimated using a validation metric operator [20, 21, 30, 
48-51, 53]. This operator computes a difference between the computational results and the 
experimental results for individual SRQs as a function of the input or control parameters in the 
validation domain. The operator can also be referred to as a “mismatch” function between the 
computational results and the experimental results over the multidimensional space of all input 
parameters. In general, it is a statistical operator because the computational results and the 
experimental results are not single numbers but distributions of numbers (e.g., cumulative 
distributions functions) or quantities that are interval valued. 

Issue 2 deals with a fundamentally and conceptually different topic, prediction, i.e., foretelling 
the response of a system under conditions for which the model has not been validated [14]. 
Prediction can also be thought of as interpolating or extrapolating the model beyond the specific 
conditions tested in the validation domain to the conditions of the intended use of the model. The 
important issue here is not the SRQs per se but the estimated total uncertainty in the SRQs of 
interest as a function of the input parameters and conditions that could exist over the domain of 
the intended use. The estimated total uncertainty is due to a wide variety of sources depending on 
the intended use of the model. Some of the uncertainties that commonly occur are as follows:  

• Parametric uncertainties in the model for the conditions of the intended use, i.e., 
uncertainties in parameters in the model that capture random variability in a parameter  

• Uncertainties in the validation metric results over the validation domain, e.g., 
uncertainties due to limited experimental data or poorly characterized experiments (issue 
1)  

• Uncertainties due to the process of interpolation or extrapolation of the model as a 
function of the input parameters representing the conditions of the intended use of the 
model 

• Uncertainties in the environments and scenarios for the conditions of the intended use of 
the model, e.g., an environment in which the system is damaged or compromised is some 
way.  

Predictive uncertainty estimation is a vast field of study far beyond the scope of this report. (See, 
for example, Refs. [54-57].) 

Issue 3 deals with (a) the comparison of the estimated accuracy of the model relative to the 
accuracy requirements of the model for the domain of the model’s intended use and (b) the 
decision of adequacy or inadequacy of the model over the domain of the model’s intended use. 
Although a decision of model adequacy or inadequacy would typically depend on many factors, 
such as computer resource requirements, we are only referring here to whether the model 
satisfies or does not satisfy an accuracy requirement. An accuracy requirement may be stated as, 
“The estimated maximum allowable error for specified SRQs cannot exceed a fixed value over 
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the domain of the model’s intended use.” The estimated error mentioned in the issue 2 discussion 
will be a function of the input parameters, and the estimated error will be an uncertain quantity. 
The maximum allowable error over the parameter range of the intended use of the model would 
typically be an absolute-value quantity or an absolute value for a relative error quantity.  

There are two types of “yes” decisions that could occur in issue 3: (a) the estimated error is less 
than the maximum allowable error over the parameter range of the intended use, and (b) the 
parameter range of the intended use is modified (restricted) such that the estimated error does not 
exceed the maximum allowable error. 

With this brief discussion of the complex conceptual and practical issues involved in the 
“encompassing” view of validation, it should be clear that there is a high likelihood for 
confusion, miscommunication, and misrepresentation of an M&S credibility assessment. As a 
result, we will adopt more restrictive meanings of certain terms, as follows: 

• Model validation will only refer to the assessment of model accuracy, incorporating any 
uncertainties that may be appropriate. This restricted use of the term “validation” refers to 
issue 1 above. 

• Uncertainty quantification of model predictions will refer to the estimation of total 
uncertainty in the SRQs of interest as a function of the input parameters and conditions 
that could exist over the domain of the intended use. This estimation process refers to 
issue 2. 

Issue 3, the decision about whether the model meets the accuracy requirements for its intended 
use, will not be explicitly dealt with in this discussion of predictive capability. Even though this 
is an important issue, possibly the most important issue for decision making, it is our view that 
this issue should not be included in the assessment of predictive capability for two crucial 
reasons. First, whether or not an M&S result satisfies an M&S accuracy requirement is a 
programmatic or design decision issue, not a capability issue by itself. Second, the specification 
of accuracy requirements has proven to be an ethereal and ever-changing goal, depending on 
such practical application-dependent issues as (1) risk-aversion of the decision maker; (2) design 
trade-offs between the robustness of interacting subsystems within a complex system; (3) widely 
varying consequences of the failure of individual subsystems or components as they affect the 
safety, reliability, and performance in the complete system; and (4) the budget, schedule, 
resources, and time available for contributing tasks.  

Our reason for excluding predictive accuracy requirements parallels that of NASA’s for 
excluding M&S maturity requirements while assessing M&S maturity, i.e., M&S maturity 
should be assessed first, then these results could be compared to M&S requirements. This topic 
is discussed further in Section 5.1. 

An important conceptual issue should be stressed here, one that addresses the relationship 
between the validation of a model and the performance of the engineering system being 
analyzed. Whether the system of interest, e.g., a component of a nuclear weapon, meets its 
performance, safety, or reliability requirements is, of course, a completely separate topic from 
the issues discussed relative to Fig. 3. Simply put, a system model could be accurate, but the 
system itself could be grossly lacking in performance, safety, or reliability. Whether or not a 
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performance margin is positive (predicted performance exceeds requirements) or negative 
(predicted performance is less than requirements) is not an issue in predictive capability. Some 
may say, “It is the most important issue.” We do not disagree with that perspective. However, we 
argue that assessing the maturity of M&S predictive capability is only one element in assessing 
the performance, safety, or robustness of an engineering system. This topic is briefly discussed in 
Section 5.2, Use of the PCMM in Risk-Informed Decision Making.   

The assessment of model accuracy, discussed with respect to issue 1, can occur in many different 
ways. Experimental data that are available on the complete system have been referred to as “data 
at the top of the validation hierarchy” [14, 16, 20, 21] or as “data for integral effects tests (IETs)” 
[30]. Here, the term “complete system” means the actual operating system of interest. 
Experimental data that are available for portions of the complete system, for example, 
subsystems or components have been characterized as “data at lower levels of the validation 
hierarchy” [14, 16, 20, 21] or as “data for separate effects tests (SETs)” [30]. An example of a 
validation hierarchy for an air-breathing hypersonic cruise missile is shown in Fig. 4. 

 

 
Figure 4: Example of a Validation Hierarchy for a Hypersonic Cruise Missile [20, 21]. 

One term that has been used extensively is model, though we have not clarified the definition of 
this term. As is well known, there are many types of models used in M&S. The three major 
models are conceptual, mathematical, and computational. A conceptual model specifies the 



 
 

 
30 

physical system and the phenomena of interest, the system environment and its intended use, the 
physical assumptions that simplify the system and the phenomena of interest, the SRQs of 
interest, and the accuracy requirements for the SRQs of interest [16, 58, 59]. A mathematical 
model is derived from the conceptual model, and it is a set of mathematical and logical relations 
that represent the physical system of interest and its responses to the environment and the ICs of 
the system [16, 59, 60]. The mathematical model is commonly given by a set of PDEs, integral 
equations, BCs and ICs, material properties, and excitation equations. The computational model 
is produced by the numerical implementation of the mathematical model, a process that results in 
a set of discretized equations and solution algorithms that are then programmed into a computer 
[16, 59]. Another way to describe the computational model is that it is a mapping of the 
mathematical model into a software package that, when combined with the proper input, 
produces simulation results. Sometimes we refer to the computational model simply as the 
“code.” 

When we use the term “model validation” we are actually referring to validation of the 
mathematical model, even though the simulation results are produced by the computational 
model. The essence of what is being assessed in validation and the essence of what is making a 
prediction is embodied in the mathematical model. Viewing model validation as mathematical 
model validation fundamentally relies on assumptions that the numerical algorithms are reliable, 
that the computer program is correct, that no human procedural errors have been made in the 
simulation, and that the numerical solution error is small. The validity of these assumptions must 
be demonstrated by the activities conducted in code verification and solution verification, as 
discussed in Sections 3.2 and 3.3, respectively. Section 4.2, Characteristics of PCMM Elements, 
describes how high scores for model validation and uncertainty quantification cannot be attained 
unless certain minimum scores are obtained in code verification and solution verification. 

3.5  Level of Maturity 

Section 2, Review of the Literature, described four methods of ranking the maturity of the 
various M &S elements. The Harmon and Youngblood [27, 28] five-point maturity ranking scale 
was dominated by the concepts of credibility, objectivity, and sufficiency of accuracy for the 
intended use. The Logan and Nitta [29] 10-point scale was dominated by the concepts of 
completeness, credibility, and sufficiency of accuracy for the intended use. The Pilch et al. [30] 
four-point scale was dominated by the level of formality, the degree of risk in the decision based 
on the M&S effort, the importance of the decision to which the M&S effort contributes, and 
sufficiency of accuracy for the intended use. The NASA [31] four-point scale was dominated by 
the level of believability, formality, and credibility, excluding the needed adequacy of M&S 
credibility elements. NASA clearly separated the ideas of credibility assessment of the M&S 
process from the requirements for a given application of M&S. 

Comparing each of the four maturity-ranking methods, we first note that the methods use scales 
of different magnitude for ranking maturity. We believe, however, that this difference is not 
fundamentally important. The key difference in our opinion between the four methods is that 
only the NASA scale explicitly excludes the issue pertaining to adequacy of the maturity 
assessment; adequacy is addressed after the assessment. We believe this is a major step forward 
in the interpretability of the assessment of an M&S effort because it segregates the assessed 
maturity of the process from the required maturity (or credibility) of the result. We expect that 
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some users of the M&S maturity assessment would prefer to have the maturity scale include, or 
at least imply, the adequacy for the intended use because it would seem to make their decisions 
easier. However, we strongly believe that the issues of maturity assessment and adequacy 
assessment should be dealt with independently as much as possible to reduce misunderstandings 
or misuse of an M&S maturity assessment. 

A concept discussed by Pilch et al. [61, 62] for assessing the maturity of each M&S element is 
based on the risk tolerance of the decision maker. Stated differently, the maturity scale would be 
given an ordinal ranking based on the risk assumed by the decision maker who uses results 
generated by the M&S effort. This approach has some appealing features, but it also introduces 
additional complexities. We mention three difficulties in using a risk-based scale that have 
practical impact when constructing a maturity scale. 

First, risk assessment is commonly, though not correctly, defined to have two components: 
(1) likelihood of an occurrence and (2) magnitude of the adverse effects of an occurrence. We 
argue that the estimated likelihood of the occurrence, the identification of possible adverse 
occurrences, and the estimated magnitude of the adverse consequences are very difficult and 
costly to determine for complex systems. Consequently, complicated risk assessments commonly 
involve significant analysis efforts in their own right. Further, combining these complicated risk 
assessments with the maturity ranking of an M&S effort is difficult to achieve and certainly 
difficult for anyone to interpret.  

Second, the risk tolerance of decision makers or groups of decision makers is a highly variable 
and difficult attribute to quantify. The original discussion of Pilch et al. correlated the risk-
tolerance scale with the increased risk perception of passing from exploratory research to 
qualification of M&S weapon applications. There are certainly other possibilities for quantifying 
risk aversion. 

Third, the risk tolerance of decision makers inherently involves comparison of the apparent or 
assessed risk with the requirement of acceptable risk from the perspective of the decision 
makers. As discussed previously, we reject the concept of incorporating requirements into the 
maturity assessment. As a result, the maturity ranking scale proposed in this report will not be 
based on risk or on the risk tolerance of the person or decision maker who uses the information. 

Because of these challenges, we take an alternative path in this report and propose a maturity 
scale with four levels. The levels are based on two fundamental information attributes discussed 
by Wang and Strong [32]: 

• Intrinsic information quality: accuracy, correctness, and objectivity 

• Contextual information quality: completeness, amount of information, and level of detail 

The use of maturity levels is an attempt to objectively track intellectual artifacts, or evidence, 
obtained in an assessment of an M&S effort. Any piece of information about the M&S effort can 
be considered an artifact. As one moves to higher levels of maturity, both the quality and the 
quantity of intrinsic and contextual information artifacts must increase. The artifacts that are 
required for the specific elements identified are discussed in Section 4, Proposed Predictive 
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Capability Maturity Model. The general characteristics of the four levels of maturity that apply 
to all elements follow. 

• Level 0 – Little or no assessment of the accuracy or completeness has been made; little or 
no evidence of maturity; individual judgment and experience only; convenience and 
expediency are the primary motivators. This level of maturity is commonly appropriate 
for low-consequence systems, systems with little reliance on M&S, scoping studies, or 
conceptual design support. 

• Level 1 – Some informal assessment of the accuracy and completeness has been made; 
generalized characterization; some evidence of maturity; some assessment has been made 
by an internal peer review group. This level of maturity is commonly appropriate for 
moderate consequence systems, systems with some reliance on M&S, or preliminary 
design support. 

• Level 2 – Some formal assessment of the accuracy and completeness has been made; 
detailed characterization; significant evidence of maturity; some assessments have been 
made by an internal peer review group. This level of maturity is commonly appropriate 
for high-consequence systems, systems with high reliance on M&S, qualification support, 
or final design support. 

• Level 3 – Formal assessment of the accuracy and completeness has been made; precise 
and accurate characterization; detailed and complete evidence of maturity; essentially all 
assessments have been made by independent peer-review groups. This level of maturity 
is commonly appropriate for high-consequence systems in which decision making is 
fundamentally based on M&S, e.g., where certification or qualification of a system’s 
performance, safety, and reliability is primarily based on M&S as opposed to being 
primarily based on complete system testing information. 

We have not mentioned the roles or importance of reproducibility, traceability, and 
documentation of the artifacts. We have excluded these attributes because they do not measure 
the quality of the information produced; rather, these attributes fundamentally contribute to proof 
of the existence of the artifacts. We believe that reproducibility, traceability, and documentation 
of the artifacts are important in an M&S effort, particularly if the effort supports certification of 
the safety and reliability of high-consequence systems that could affect the public or the 
environment. The roles of reproducibility, traceability, and documentation of all artifacts 
produced by computational analyses in risk assessments for nuclear reactor safety, as well as in 
performance assessments for the Waste Isolation Pilot Plant (WIPP) and the Yucca Mountain 
Project, are well recognized and mandated by regulatory policy. Not withstanding this 
experience, our maturity ranking will exclude any proof of existence of the artifacts related to the 
maturity of the M&S effort. 
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4. Proposed Predictive Capability Maturity Model 
Using the basic attributes and characteristics described previously, we now describe our 
proposed Predictive Capability Maturity Model (PCMM). Section 4.1 discusses the purposes and 
uses of the model. Section 4.2 provides detailed text and tabular descriptions of the elements in 
the PCMM table, which is a tool designed to facilitate the assessment of maturity of an M&S 
effort. 

4.1  Purpose and Uses of the PCMM 

For reasons that will become clear in the discussion that follows, we have divided the four 
groups discussed in Section 3 into six elements for the PCMM. The four groups in Section 3 
were physics modeling fidelity, code verification, solution verification, and model validation and 
uncertainty. For the PCMM, physics modeling fidelity was divided into two elements: 
representation and geometric fidelity, and physics and material model fidelity. And model 
validation and uncertainty was also divided into two elements for the PCMM: model validation, 
and uncertainty quantification and sensitivity analysis. Thus, the elements that will be used for 
the PCMM are as follows: 

• Representation and geometric fidelity 

• Physics and material model fidelity 

• Code verification 

• Solution verification 

• Model validation 

• Uncertainty quantification and sensitivity analysis 

For each of these elements, maturity is assessed according to the four-level scale described in 
Section 3.5, Level of Maturity. The contributing elements and the maturity of each element can 
be thought of as relatively independent measures, or attributes, of predictive capability. 
Accordingly, the PCMM can be summarized in a table format, where the elements form the rows 
of the table and the maturity levels (0 through 3) form the columns, as shown in Table 1. 

A PCMM assessment consists of evaluating the maturity level of six individual elements and 
scoring the maturity level of each element. For each level of maturity, there are a set of 
predefined descriptors that are used to assess the maturity level of a particular element. If an 
element is characterized by an assessor (an individual who performs the actual assessment of the 
maturity level for an element) as encompassing the entire set of descriptors at a given level of 
maturity, the element can be considered to be fully assessed at that level of maturity. An element 
that is fully assessed at a particular level of maturity will generally be assigned, by the assessor, a 
score that is equivalent to the maturity level. Thus, for example, if an element was assessed so 
that it fully met all of the predefined descriptors at maturity level 1, the element would have a 
score of 1. In preliminary evaluations of the PCMM table over a range of engineering 
applications, we have commonly found that some, but not all, of the descriptors at a given level 
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Table 1: Table Format for PCMM Assessment 

MATURITY 

 
ELEMENT 

Maturity 
Level 0 

Maturity 
Level 1 

Maturity 
Level 2 

Maturity 
Level 3 

Representation 
and Geometric 

Fidelity 

    

Physics and 
Material Model 

Fidelity 

   

 

 

Code 
Verification 

    

Solution 
Verification 

    

Model 
Validation 

    

Uncertainty 
Quantification 
and Sensitivity 

Analysis 

 

 

   

 
have been achieved. For example, at maturity level 2, only half the descriptors for a given 
attribute may have been attained. For this common situation, it has proven useful to give a 
fractional score for the maturity level instead of strictly assigning an integer score at the lower 
level of maturity. As a result, noninteger maturity scores expressed in tenths, such as 1.5 for 
partially achieving level 2, should be considered in assessing the maturity level of each element. 
In Section 4.2.5 we discuss certain requirements that affect the order in which the individual 
elements are assessed as well as the scores that can be assigned to certain elements, give scores 
on other elements.  Upon completion of the assessment, the table would have six individual 
scores, one score per element. 

Before presenting additional details about the table constructed for the PCMM, it is appropriate 
to discuss more clearly the purpose of this table, certain characteristics of the table, and how the 
results (i.e., scores) from completing this table can be used. Simply stated, the purpose of the 
table is to assess the level of maturity, at a given point in time, of the key elements in an M&S 
effort that are directed at an application of interest. As explained in Section 3, the assessment 
should be conducted, in principle, with little or no regard to any programmatic (or project) 
requirement for the maturity of the M&S effort. Objectivity, a key ingredient of intrinsic 
information quality (discussed previously in Section 3.5), increases to the degree that maturity 
assessment is separated from project maturity requirements. 

Table 2 gives an example of a PCMM table after a maturity assessment of an M&S effort has 
been completed.  
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Table 2: Example of Predictive Capability Maturity Model after Maturity Assessment 

MATURITY 

 
ELEMENT 

Maturity 
Level 0 

Maturity 
Level 1 

Maturity 
Level 2 

Maturity 
Level 3 

Element  
Score 

Representation 
and Geometric 

Fidelity 

  

Assessed 

   

1 

Physics and 
Material Model 

Fidelity 

   

Assessed 

  

2 

Code 
Verification 

 Assessed   1 

Solution 
Verification 

Assessed    0 

Model 
Validation 

 Assessed   1 

Uncertainty 
Quantification 
and Sensitivity 

Analysis 

 

Assessed 

    

0 

 
For purposes of explanation, consider that all elements in Table 2 were assessed with the scores 
shown to the right of the table. Then the designator “Assessed” would be placed in the 
appropriate row and column in the table. Once the assessment has been completed, the set of 
scores for each element can be compiled. In Table 1, the set of scores completed by the 
assessor(s) for the six elements is [1, 2, 1, 0, 1, 0].  

We believe the type of summary information shown in Table 2 will prove very useful and 
informative in many environments. Following are some of the experiences we had in our 
preliminary use of the PCMM table. 

• In attempting to conduct a PCMM assessment, we found that the assessors are generally 
not familiar with many of the concepts in the table. As a result of learning about these 
concepts, the assessors will greatly broaden and deepen their knowledge of many of the 
elements that contribute to confidence in M&S. 

• Conducting a PCMM assessment and sharing it with interested parties, decision makers, 
and stakeholders engenders discussions that would not have occurred without such an 
assessment. This kind of communication is one of the most significant consequences of 
an M&S maturity assessment in general. An example of a beneficial interaction would be 
to initiate a conversation with a stakeholder who may not be familiar with any of the 
contributing elements to M&S and help to educate that stakeholder about the importance 
of these elements and the results of the assessment. 

• PCMM assessments made over a period of time can be used to track the progress of M&S 
efforts. This is useful for M&S managers, stakeholders (decision makers using the results 
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of the M&S effort), and M&S funding sources to determine progress or value added over 
time. 

A key practical issue in completion of the PCMM table is, who should provide the assessments 
in the table? We strongly believe that an individual, or a team, that has detailed knowledge of an 
element should complete that element of the table. These individuals should be very familiar 
with the elements of the M&S effort and the application of interest. Sometimes, depending on 
the magnitude of the M&S effort, an M&S project manager is sufficiently familiar with all 
elements of the table and can complete it in its entirety. The assessed levels in the completed 
table should represent the actual status of the M&S effort, not some anticipated or future status. 
In other words, the table should measure the maturity of the actual status at a given point in time, 
not something that is “nearly” attained or a status that would “look good” in a program review or 
in a marketing activity. 

With the PCMM, we are primarily interested in providing M&S maturity assessment information 
for an application of interest to program managers, interested stakeholders, and decision makers. 
We recognize that many other issues enter into risk-informed decision making, some of which 
are discussed in Section 5.2, Use of PCMM Scores in Risk-Informed Decision Making. Some 
applications of interest that commonly involve M&S efforts are (a) design or optimization of 
new systems; (b) modification or optimization of existing systems; and (c) assessment of the 
performance, safety, or reliability of existing or proposed systems. When we refer to a system, 
we include any engineered or natural system entity, e.g., subsystems, components, or part of a 
component. In addition, the specification of a system includes the specification of the 
environment in which the system must operate, e.g., normal, abnormal, or hostile environments. 
With the system and environment specified, one can then begin to identify particular aspects of 
each of the six elements that are important to the M&S effort. 

In the nuclear weapons complex, the topic of quantification of margins and uncertainty (QMU) 
has attained a high level of visibility. Accordingly, some comments should be made about the 
relationship of the PCMM to QMU [62]. QMU means different things to different people. For 
the discussion here, we view QMU as a process for predicting the performance of a system and 
for comparing the predicted performance with the required performance, while including the 
uncertainty in both the estimated performance and the required performance. Given this 
interpretation of QMU, we view the PCMM as one of many factors that should be considered in 
the assessment of the predicted system performance, its estimated uncertainty, and the estimated 
uncertainty in the difference between the predicted performance and the performance 
requirement. For example, the PCMM could influence confidence in the estimated margin of the 
system. We also see situations where the PCMM could alter specifications for the required 
performance of certain elements of a system. For example, if a requirement for the maximum 
miss distance of a weapon from a hardened, deeply buried target was specified, M&S could be 
used to alter the miss distance requirement if more information could be obtained on the 
characteristics of the target. 

An important aspect should be mentioned again concerning the interpretation of scores from a 
PCMM assessment. Although this aspect was discussed previously in this report, it needs to be 
stressed and clarified further because it can cause great confusion. We have observed that users 
of the PCMM commonly interpret an increase in maturity assessment over time to mean that the 
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accuracy of the M&S predictions has improved. This is not necessarily true. Stated differently, 
many people want to interpret the PCMM scores as a predictive accuracy assessment or, 
similarly, as a measure of the accuracy of the M&S results. As stressed in Section 3.5, Level of 
Maturity, the PCMM assesses the maturity of the M&S process elements, not necessarily the 
accuracy of the M&S results. The accuracy of the M&S results would commonly increase as the 
PCMM scores improve, but there is not a one-to-one correspondence.  

To clarify why this is true, consider an example based on Table 2. As explained previously, the 
maturity level scores shown in Table 2 are written as the sequence [1, 2, 1, 0, 1, 0] for the six 
elements. Suppose that the element of uncertainty quantification and sensitivity analysis was 
improved from a 0 assessment (the last value in the maturity assessment above) to the condition 
where multiple simulations were obtained and resulted in capturing some of the uncertainties 
present in the system being analyzed. For example, suppose the uncertainty quantification 
analysis began to show a large effect due to variability in the strength of welded joints in a 
component. With this improved uncertainty quantification, suppose the maturity assessment of 
the PCMM then became [1, 2, 1, 0, 1, 1], i.e., the last value in the sequence changed from 0 to 1. 
The decision maker would then have more complete information about the system’s uncertainty 
quantification. The decision maker would then have an estimate of the uncertainty of the SRQs 
of interest as a function of the variability in weld strength, whereas previously the decision 
maker may have had no idea of the uncertainty. While the accuracy of the predictions in these 
hypothetical cases has not changed, the decision maker would now be able to recognize some of 
the contributing uncertainties to the predicted performance of the system. 

4.2  Characteristics of PCMM Elements 

A description of each element of the PCMM table is given in Table 3. This table can be used to 
become familiar with the basic descriptors of each element. Please note that the requirements of 
the descriptors at each maturity level accumulate as one moves to higher maturity levels within 
an element. For example, to attain a given maturity level for a given element, the descriptors 
within the specific element of the table must be satisfied, in addition to all descriptors at the 
lower levels in that element or row. 

A detailed discussion follows for each element of the table. 
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Table 3: General Descriptions for Table Entries of the PCMM 

                   MATURITY 
 

 ELEMENT 

Maturity Level 0 
Low Consequence, 

Minimal M&S Impact, 
e.g. Scoping Studies 

Maturity Level 1 
Moderate Consequence, 

Some M&S Impact, 
e.g. Design Support 

Maturity Level 2 
High-Consequence, 
High M&S Impact, 

e.g. Qualification Support 

Maturity Level 3 
High-Consequence, 

Decision-Making Based on M&S, 
e.g. Qualification or Certification  

Representation and 
Geometric Fidelity 
What features are neglected 
because of simplifications or 

stylizations? 

• Judgment only 
• Little or no 

representational or 
geometric fidelity for 
the system and BCs 

• Significant simplification 
or stylization of the 
system and BCs 

• Geometry or 
representation of major 
components is defined 

• Limited simplification or stylization of 
major components and BCs 

• Geometry or representation is well 
defined for major components and 
some minor components 

• Some peer review conducted 

• Essentially no simplification or stylization 
of components in the system and BCs 

• Geometry or representation of all 
components is at the detail of “as built”, 
e.g., gaps, material interfaces, fasteners 

• Independent peer review conducted 

Physics and Material 
Model Fidelity 

How fundamental are the physics 
and material models and what is 
the level of model calibration? 

• Judgment only 
• Model forms are either 

unknown or fully 
empirical 

• Few, if any, physics-
informed models 

• No coupling of models 

• Some models are 
physics based and are 
calibrated using data 
from related systems 

• Minimal or ad hoc 
coupling of models 

• Physics-based models for all 
important processes 

• Significant calibration needed using 
separate effects tests (SETs) and 
integral effects tests (IETs) 

• One-way coupling of models 
• Some peer review conducted 

• All models are physics based 
• Minimal need for calibration using SETs 

and IETs 
• Sound physical basis for extrapolation 

and coupling of models 
• Full, two-way coupling of models 
• Independent peer review conducted 

Code Verification 
Are algorithm deficiencies, 

software errors, and poor SQE 
practices corrupting the 

simulation results? 

• Judgment only 
• Minimal testing of any 

software elements 
• Little or no SQE 

procedures specified 
or followed 

• Code is managed by 
SQE procedures 

• Unit and regression 
testing conducted 

• Some comparisons 
made with benchmarks 

• Some algorithms are tested to 
determine the observed order of 
numerical convergence 

• Some features & capabilities (F&C) 
are tested with benchmark solutions 

• Some peer review conducted 

• All important algorithms are tested to 
determine the observed order of 
numerical convergence 

• All important F&Cs are tested with 
rigorous benchmark solutions 

• Independent peer review conducted 

Solution Verification 
Are numerical solution errors and 

human procedural errors 
corrupting the simulation results? 

• Judgment only 
• Numerical errors have 

an unknown or large 
effect on simulation 
results 

• Numerical effects on 
relevant SRQs are 
qualitatively estimated 

• Input/output (I/O) verified 
only by the analysts 

• Numerical effects are quantitatively 
estimated to be small on some 
SRQs 

• I/O independently verified 
• Some peer review conducted 

• Numerical effects are determined to be 
small on all important SRQs 

• Important simulations are independently 
reproduced 

• Independent peer review conducted 

Model Validation 
How carefully is the accuracy of 
the simulation and experimental 

results assessed at various tiers in 
a validation hierarchy? 

• Judgment only 
• Few, if any, 

comparisons with 
measurements from 
similar systems or 
applications 

• Quantitative assessment 
of accuracy of SRQs not 
directly relevant to the 
application of interest 

• Large or unknown exper-
imental uncertainties 

• Quantitative assessment of 
predictive accuracy for some key 
SRQs from IETs and SETs 

• Experimental uncertainties are well 
characterized for most SETs, but 
poorly known for IETs 

• Some peer review conducted 

• Quantitative assessment of predictive 
accuracy for all important SRQs from 
IETs and SETs at conditions/geometries 
directly relevant to the application 

• Experimental uncertainties are well 
characterized for all IETs and SETs 

• Independent peer review conducted 
Uncertainty 

Quantification 
and Sensitivity 

Analysis 
How thoroughly are uncertainties 

and sensitivities characterized and 
propagated? 

• Judgment only 
• Only deterministic 

analyses are 
conducted 

• Uncertainties and 
sensitivities are not 
addressed 

• Aleatory and epistemic 
(A&E) uncertainties 
propagated, but without 
distinction 

• Informal sensitivity 
studies conducted 

• Many strong UQ/SA 
assumptions made 

• A&E uncertainties segregated, 
propagated and identified in SRQs 

• Quantitative sensitivity analyses 
conducted for most parameters 

• Numerical propagation errors are 
estimated and their effect known 

• Some strong assumptions made 
• Some peer review conducted 

• A&E uncertainties comprehensively 
treated and properly interpreted 

• Comprehensive sensitivity analyses 
conducted for parameters and models 

• Numerical propagation errors are 
demonstrated to be small 

• No significant UQ/SA assumptions made 
• Independent peer review conducted 
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4.2.1  Representation and Geometric Fidelity 
This element is directed primarily toward the level of physical or informational characterization 
of the system being analyzed or the specification of the geometrical features of the system. For 
fully empirical and semi-empirical models, there is usually little geometric fidelity, e.g., lumped-
mass representations or representations that simply deal with the functionality of system 
components. For physics-based models that solve PDEs, significant geometric fidelity can be 
specified that is then used to prescribe the ICs and BCs for such equations. For other 
computational models, such as electrical circuit or agent-based models, other concepts of 
representation fidelity are needed. For example, in the case of electrical models, characterization 
deals with the fidelity of the electrical circuit diagram and level of characterization of the 
electrical components in the system. For agent-based models, representation fidelity might be the 
geography over which agents move. Geometric fidelity typically increases as the level of detail 
of the physical modeling increases. Thus, the lowest level of maturity assesses geometric fidelity 
based on convenience, simplicity, and the judgment of the computational practitioner. The higher 
levels of geometric maturity provide increasingly detailed information that is more representative 
of the “as built” or “real use” geometry; accordingly, levels of stylization of the system and 
environment decrease. For example, higher levels of detail are typically given in terms of a 
CAD/CAM file of the geometry, material and surface characteristics, and mechanical assembly 
of the system. For systems that may be in a state of excessive wear or that may be in abnormal or 
damaged condition, the specification of the geometry and surface properties can become quite 
complex and quite uncertain. 

General descriptions of the levels of representation and geometric fidelity follow: 

• Level 0: Simplicity, convenience, and functional operation of the system dominate the 
fidelity of the representation and the geometry for the system being analyzed. There is 
heavy reliance on judgment and experience, with little or no expectation or quantification 
of representation and geometric fidelity. 

• Level 1: Quantitative specifications are applied to describe the geometry of the major 
components of the system being analyzed. Much of the real system remains stylized or 
ignored, e.g., gaps in systems, changes in materials, and surface finish. 

• Level 2: Quantitative specifications are applied to replicate the geometric fidelity of most 
of the components of the real system. Little of the real system remains stylized or 
ignored. For example, important imperfections due to system assembly or defects due to 
wear or damage in the system are included. A level of peer review, such as an informal 
review or an internal review, of the model representation and geometric fidelity has been 
conducted. 

• Level 3: The geometric representation in the model is “as built” or “as existing,” meaning 
that no aspect of the geometry of the modeled real system is missing, down to scales that 
are determined to be relevant to the level of physical modeling chosen. An example is a 
complete CAD/CAM model for the real system as assembled and meshed for the 
computational model with virtually no approximations or simplifications included. 
Independent peer review of the model representation and geometric fidelity has been 
conducted, e.g., formal review by the M&S effort customer or by reviewers external to 
the organization conducting the M&S. 
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4.2.2  Physics and Material Model Fidelity 

This attribute primarily addresses the following:  

• The degree that models are physics based 

• The degree to which the models are calibrated  

• The physics fidelity basis with which the models are being extrapolated from their 
validation and calibration database to the conditions of the application of interest 

• The quality and degree of coupling the multiphysics effects that exist in the application of 
interest 

As discussed in Section 3.1, Physics Modeling Fidelity, models typically range from fully 
empirical to physics based: 

• Fully empirical – The model is based entirely on statistical fits of experimental data.  

• Semi-empirical – The model conserves mass, momentum, and energy, but it 
fundamentally relies on calibration of important parameters. 

• Physics based – An example is an electrical circuit model coupled to a physics-based 
model of the electrical currents generated by circuit wiring exposed to an electromagnetic 
environment.  

Generally, as the fidelity of the model increases, the model is increasingly more able to provide 
physics-based explanatory power for the particular physical phenomenon of interest. Within the 
broad class of physics-based models, there are important distinctions in the degree to which the 
model is calibrated. For example, does the model require recalibration even if there are relatively 
small changes in the system design or small changes in the system environment? Alternately, 
does the model require calibration only at lower levels in the validation hierarchy, i.e., separate 
effects tests (SETs), in order to yield accurate predictions? Or, does the model also require 
calibration or recalibration at higher levels of the validation hierarchy, i.e., integral effects tests 
(IETs), to attain accurate predictions? For two models yielding the same level of agreement with 
experimental data, one model calibrated with SETs and one model calibrated with IETs, the 
model that requires calibration with the SETs has more predictive capability than does the model 
that requires calibration with the IETs. The maturity ranking and understanding of the coupled 
physics effects and their importance should be closely related to the development and use of a 
Phenomena Identification and Ranking Table (PIRT) [49, 63]. 

General descriptions of the various levels of physics and material model fidelity follow: 

• Level 0: The model is fully empirical, or the model form is not known. There is little or 
no coupling of models representing multiple functional elements of the system, and the 
coupling that does exist is not physics based. Confidence in the model is strictly based on 
the judgment and experience of the practitioner. 

• Level 1: The model is semi-empirical in the sense that portions of the modeling are 
physics based; however, important features, capabilities, or parameters in the model are 
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calibrated using data from very closely related physical systems. The coupling of 
functional elements or components is minimal, or ad hoc, and not physics based. 

• Level 2: All important physical process models and material models are physics based. 
Calibration of important model parameters is necessary, using data from SETs and IETs. 
All model calibration procedures are implemented on the model input parameters, not on 
the SRQs. Important physical processes are coupled using physics-based models with 
couplings in one direction. Some level of peer review, such as an informal review or an 
internal review, of the physics and material models has been conducted. 

• Level 3: All models are physics based with minimal need for calibration using SETs and 
IETs. Where extrapolation of these models is required, the extrapolation is based on well-
understood and well-accepted physical principles. All physical processes are coupled in 
terms of physics-based models with two-way coupling and physical process effects on 
physical and material parameters, BCs, geometry, ICs, and forcing functions. 
Independent peer review of the physics and material models has been conducted, e.g., 
formal review by the M&S effort customer or by reviewers external to the organization 
conducting the M&S. 

4.2.3  Code Verification 

This attribute focuses on the following:  

• Correctness and fidelity of the numerical algorithms used in the code relative to the 
mathematical model, e.g., the PDE model 

• Correctness of source code 

• Configuration management, control, and testing of the software through SQE practices 

The correctness and fidelity of the numerical algorithms and the correctness of the source code 
are primarily determined by conducting various types of tests on the code. The primary type of 
test is to compare the numerical solution results from the code with highly accurate solutions, 
which are usually referred to as benchmark solutions [37]. The most rigorous benchmark 
solutions are manufactured solutions and analytical solutions [15, 33]. Comparisons between the 
code and the benchmark solutions can result in error measures between the code and the SRQs, 
or these comparisons can yield a calculation of the observed order of convergence of the 
numerical algorithm in the code being tested. 

The maturity of the SQE practices should measure the scope and rigor of configuration 
management and software control. 

General descriptions of the levels of code verification are as follows: 

• Level 0: Code verification is based almost entirely on the judgment and experience of the 
computational practitioners involved. There is little or no formal verification testing of 
the software elements. Little or no SQE practices are defined and practiced in the 
implementation, management, and use of the code. 
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• Level 1: Most associated software is implemented and managed with formal SQE 
practices. Unit and regression testing of the software is conducted regularly with a high 
percentage of line coverage attained. Verification test suites using benchmark solutions 
are minimal, and only error measures are obtained in some SRQs. 

• Level 2: All associated software is implemented and managed with formal SQE practices. 
Verification test suites are formally defined and systematically applied using benchmark 
solutions to compute the observed order of convergence of some numerical algorithms. 
Some features and capabilities (F&Cs), such as complex geometries, mesh generation, 
physics, and material models, have been tested with benchmark solutions. Some level of 
peer review, such as an informal review or an internal review, of the code verification has 
been conducted. 

• Level 3: All important algorithms have been tested using rigorous benchmark solutions to 
compute the observed order of convergence. All important features and capabilities 
(F&Cs), such as two-way coupling of multiphysics processes, have been tested with 
rigorous benchmark solutions. Independent peer review of code verification has been 
conducted, e.g., formal review by the M&S effort customer or by reviewers external to 
the organization conducting the M&S. 

4.2.4  Solution Verification 

This attribute deals with assessment of the following: 

•  Numerical solution errors in the computed results  

• Confidence in the computational results as they may be affected by human errors 

Rigor and numerical solution reliability are the dominant components of the assessment of this 
element. Numerical solution errors are any errors due to mapping the mathematical model to the 
discretized model and any errors due to solution of the discretized model on a computer. Of 
concern in this element are numerical solution errors due to spatial and temporal discretization of 
the PDEs or integral equations and the iterative solution error due to a linearized solution 
approach to a set of nonlinear discretized equations. Additional numerical solution errors that 
should be addressed are the potential detrimental effects of numerical parameters in solution 
algorithms; errors due to approximate techniques used to solve nondeterministic systems, e.g., 
error due to a small number of samples used in a Monte Carlo sampling method; and round-off 
error due to finite precision on a computer. Human errors (mistakes) are also a concern in the 
assessment of this element. Human errors are any errors made in (1) preparing and assembling 
the elements of the computational model, (2) executing the computational solution, and (3) 
postprocessing, preparing, or interpreting the computational results. 

General descriptions of the levels of solution verification are as follows: 

• Level 0: No formal attempt is made to assess any of the possible sources of numerical 
error. Any statement about the impact of numerical error is based purely on the judgment 
and experience of the computational practitioner. No assessment about the correctness of 
software inputs or outputs has been conducted. 
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• Level 1: Some kind of formal method is used to assess the influence of numerical errors 
on some SRQs. This could include a posteriori error estimation of global norms, iterative 
convergence studies, or sensitivity studies to determine how sensitive certain SRQs are to 
changes in mesh or temporal discretization. A formal effort is made by the computational 
practitioners to check the correctness of input/output (I/O) data. 

• Level 2: Quantitative error estimation methods are used to estimate numerical errors on 
some SRQs, and these estimates show that the errors are small for some conditions of the 
application of interest. I/O quantities have been verified by knowledgeable computational 
practitioners who have some level of independence from the M&S effort. Some level of 
peer review, such as an informal review or an internal review, of the solution verification 
activities has been conducted. 

• Level 3: Quantitative error estimation methods are used to estimate numerical errors on 
all important SRQs, and these estimates show that the errors are small over the entire 
range of conditions for the application of interest. Important computational simulations 
are reproduced, using the same software, by independent computational practitioners. 
Independent peer review of solution verification activities has been conducted, e.g., 
formal review by the M&S effort customer or by reviewers external to the organization 
conducting the M&S. 

A subtle, but important, point should be stressed regarding the maturity levels of solution 
verification. In Section 3.5, Level of Maturity, and Section 4.1, Purpose and Uses of the PCMM, 
we stressed that higher levels of maturity do not necessarily imply higher levels of accuracy of 
the M&S results. However, in the descriptions of maturity levels just given it is apparent that 
higher levels level of maturity require increased solution accuracy. This apparent dichotomy is 
resolved by understanding that increased numerical solution accuracy is necessary to gain more 
confidence in the fidelity of the mapping of the mathematical model to the solution of the 
discrete model. We are not necessarily gaining confidence in the comparison of the 
computational results with experimental data. In other words, we require increased correctness 
and accuracy of the numerical solution, including code verification, so that when we compare 
computational results and experimental results we are confident that we are indeed comparing 
the physics of the mathematical model with nature’s reflection of reality in experimental 
measurements. The user of the M&S results should be presented quantitative information 
concerning how well the numerical results represent the physics in the PDE model, as opposed to 
a contaminated mixture of physics and numerical error. If we cannot have confidence in what we 
believe we are comparing, then we are dealing with a convolved mixture of physics modeling, 
physics modeling approximations (error), and numerical error, in which no bases for confidence 
can be made. We will see in Section 4.2.5 that more accurate comparisons between the 
computational results and the experimental measurements are not required to achieve higher 
maturity levels in model validation.  

4.2.5  Model Validation 

This attribute focuses on the following:  

• Thoroughness and precision of the accuracy assessment of the computational results 
relative to the experimental measurements 
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• Completeness and precision of the characterization of the experimental conditions and 
measurements 

• Relevancy of the experimental conditions, physical hardware, and measurements in the 
validation experiments compared to the application of interest  

As discussed in Section 3.4, Model Validation and Uncertainty Quantification, and Section 4.1, 
Purpose and Uses of the PCMM, the focus of model validation is on the precision and 
completeness of the process of the model accuracy assessment, not on the accuracy of the 
computational model itself. By “precision” of validation we mean, (1) how carefully and 
accurately are the experimental uncertainties estimated? and (2) how well understood and 
quantified are all of the conditions of the experiment that are required as inputs for simulation by 
the computational model? By “completeness” of validation we mean, how well do the conditions 
(geometry, BCs, ICs, and forcing functions) and actual physical hardware of the validation 
experiments conducted relate to the actual conditions and hardware of the application of interest? 

For SETs, it is expected that there will be many dissimilarities between the SET experiments and 
the actual application of interest. For IETs, however, there should be a close relationship 
between the IET experiments and the application of interest, particularly with respect to the 
experimental hardware and the coupled physical phenomena occurring in each. For a more 
complete discussion of the concepts behind SETs, IETs, and the construction of a validation 
hierarchy, see Refs. [14, 16, 20, 21, 30, 49]. 

As discussed in Section 3.4, Model Validation and Uncertainty Quantification, the correctness 
and credibility of model validation fundamentally relies on assumptions that the numerical 
algorithms are reliable, that the computer program is correct, that no human procedural errors 
have been made in the simulation, and that the numerical solution error is small. These are major 
assumptions that we, and many others in M&S, have discovered are commonly unfounded. 
Consequently, to properly inform the user of the information in the PCMM table about the 
veracity of these assumptions, we require that the maturity level of the elements model validation 
and uncertainty quantification and sensitivity analysis can be no higher than two levels above the 
maturity levels of the minimum of code verification and solution verification. This requirement 
places further restrictions on conducting the PCMM assessment and means that the maturity 
levels of code verification and solution verification must be assessed before the maturity levels of 
model validation and of uncertainty quantification and sensitivity analysis are assessed. As an 
example of the dependencies between elements, assume that, as discussed in Table 2, code 
verification and solution verification were at levels 1 and 0, respectively. Consequently, the 
maximum maturity level that the model validation element and the uncertainty quantification and 
sensitivity analysis element could be is level 2. Stated differently, if either code verification or 
solution verification has a maturity level of 0, then both the model validation element and the 
uncertainty quantification and sensitivity analysis element can have a maximum maturity level of 
2, even if the assessor(s) were to independently judge either or both of these elements at a level 
higher than 2.  

General descriptions of the various levels of model validation are as follows: 
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• Level 0: Accuracy assessment of the model is based almost entirely on judgment and 
experience. Few, if any, comparisons have been made between computational results and 
experimental measurements of similar systems of interest. 

• Level 1: Limited quantitative comparisons are made between computational results and 
experimental results. Either comparisons for SRQs have been made that are not directly 
relevant to the application of interest or the experimental conditions are not directly 
relevant to the application of interest. Experimental uncertainties, either in the SRQs 
and/or in the characterization of the conditions of the experiment, are largely 
undetermined or based on experience. 

• Level 2: Quantitative comparisons between computational results and experimental 
results have been made for some key SRQs from SET experiments and limited IET 
experiments. Experimental uncertainties are well characterized (a) for most SRQs of 
interest and (b) for experimental conditions for the SETs conducted; however, the 
experimental uncertainties are not well characterized for the IETs. Some level of peer 
review, such as an informal review or an internal review, of the model validation 
activities has been conducted. 

• Level 3: Quantitative comparisons between computational and experimental results have 
been made for all important SRQs from an extensive database of both SET and IET 
experiments. The conditions of the SETs should be relevant to the application of interest; 
and the conditions, hardware, and coupled physics of the IETs should be very similar to 
the application of interest. Some of the SET computational predictions and most of the 
IET predictions should be “blind.” Experimental uncertainties and conditions are well 
characterized for SRQs in both the SET and IET experiments. Independent peer review of 
the model validation activities has been conducted, e.g., formal review by the M&S effort 
customer or by reviewers external to the organization conducting the M&S. 

4.2.6  Uncertainty Quantification and Sensitivity Analysis 

This attribute focuses on the following: 

• Thoroughness and soundness of the uncertainty quantification effort, including 
identification and characterization of all plausible sources of uncertainty 

• Accuracy and correctness of propagating uncertainties through a computational model 
and interpreting uncertainties in the SRQs of interest  

• Thoroughness and precision of a sensitivity analysis to determine the most important 
contributors to uncertainty in system responses  

Recognition of uncertainties refers to the activity of identifying and understanding all possible 
uncertainties within the system of interest, such as parametric uncertainty and uncertainties in the 
geometry, BCs, forcing functions, or environmental conditions. Characterization of model 
predictive uncertainty primarily deals with the proper estimation and representation of all 
uncertainties that could exist as part of the prediction for the system of interest. A key aspect of 
characterization, appreciated for almost two decades by the risk-assessment community, is the 
segregation of uncertainties into aleatory and epistemic elements [54-56, 64]. Aleatory 
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uncertainty is uncertainty due to inherent variation associated with the system of interest or the 
environment. Aleatory uncertainty is also referred to as variability, irreducible uncertainty, 
stochastic uncertainty, and uncertainty due to chance. Epistemic uncertainty is uncertainty due to 
lack of knowledge with respect to any phase of the M&S process for the system of interest or the 
environment. For example, a parameter that is a purely epistemic uncertainty is characterized by 
a situation for which there exists a single, correct, or true value, but the value is not known 
precisely. Epistemic uncertainty is also referred to as reducible uncertainty and sometimes as 
subjective uncertainty. 

Propagating uncertainty addresses two questions: How are input uncertainties propagated 
through the model? and How are uncertainties in the model itself estimated? Input uncertainty 
refers to any uncertainty in any input quantity for the model, including parameters, BCs, forcing 
functions, environments, and scenarios. Input uncertainties can be purely aleatory, purely 
epistemic, or a mixture of aleatory and epistemic. Uncertainties in the model itself can be due to 
lack of knowledge of the physical processes or due to approximations made that eliminate certain 
aspects of the physical processes of interest. Model form uncertainty is a purely epistemic 
uncertainty. As a result, the mathematical model may not be completely reliable. Model form 
uncertainty can sometimes be estimated by using alternate or competing models to represent the 
same physical process. This approach can be effective if a lower-fidelity model is compared to a 
higher-fidelity, more reliable model of the physics. The higher-fidelity model, however, could be 
so prohibitively expensive from a computational resources perspective that it could not be used 
extensively in the uncertainty quantification analysis. 

A sensitivity analysis provides additional important information to the user of the computational 
simulation analysis beyond what is typically considered a part of an uncertainty quantification 
analysis [65, 66]. A sensitivity analysis is typically directed at two closely related goals. First, 
one may be interested in determining which computational simulation inputs have the largest 
effect, either locally or globally, on a particular SRQ or group of SRQs. The information 
obtained from the first goal is commonly used for system design and optimization, as well as for 
determination of the most advantageous operational conditions for maximizing system 
performance. Second, one may be interested in determining which uncertain simulation inputs 
produce the largest change in uncertainty of a particular SRQ or group of SRQs. The information 
from this second goal may be used, for example, to determine which manufacturing variabilities 
contribute most to variability in certain SRQs, or to determine what physical experiments should 
be conducted to most reduce the epistemic uncertainty that is due to poorly understood coupled-
physics phenomena. 

As discussed previously in Section 4.2.5, Model Validation, the maturity level of the model 
validation element and the uncertainty quantification and sensitivity analysis element can be no 
higher than two levels above the maturity levels of the minimum of code verification and solution 
verification. 

General descriptions of the various levels of uncertainty quantification and sensitivity analysis 
are as follows: 
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• Level 0: Judgment and experience are dominant forms of uncertainty assessment. Only 
deterministic analyses were conducted for the system of interest. Informal “spot checks” 
or “what if” studies for various conditions were conducted to determine their effect. 

• Level 1: Uncertainties in the system of interest are identified, represented, and propagated 
through the computational model, but they are not segregated with respect to whether the 
uncertainties are aleatory or epistemic. Sensitivity of some system responses to some 
system uncertainties and environmental condition uncertainties was investigated, but the 
sensitivity analysis was primarily informal or exploratory rather than systematic. Many 
strong assumptions are made with respect to the uncertainty quantification/sensitivity 
analysis (UQ/SA); for example, most probability density functions are characterized as 
Gaussian, and uncertain parameters are considered to be independent of all other 
parameters.  

• Level 2: Uncertainties in the system of interest are characterized as either aleatory and 
epistemic. The uncertainties are propagated through the computational model, while their 
character is kept segregated both in the input and in the SRQs. Quantitative sensitivity 
analyses were conducted for most system parameters, while segregating aleatory and 
epistemic uncertainties. Numerical approximation or sampling errors due to propagation 
of uncertainties through the model are estimated, and the effect of these errors on the 
UQ/SA results is understood. Some strong UQ/SA assumptions were made, but 
qualitative results suggest that the effect of these assumptions is not significant. Some 
level of peer review, such as an informal review or an internal review, of the uncertainty 
quantification and sensitivity analyses has been conducted. 

• Level 3: Aleatory and epistemic uncertainties are comprehensively treated, and their 
segregation in the interpretation of the results is strictly maintained. Detailed 
investigations were conducted to determine the effect of uncertainty introduced due to 
model extrapolations, if required, to the conditions of the system of interest. A 
comprehensive sensitivity analysis was conducted for both parametric uncertainty and 
model form uncertainty. Numerical approximation or sampling errors due to propagation 
of uncertainties through the model are carefully estimated, and their effect on the UQ/SA 
results is demonstrated to be small. No significant UQ/SA assumptions were made. 
Independent peer review of uncertainty quantification and sensitivity analyses have been 
conducted, e.g., formal review by the M&S effort customer or by reviewers external to 
the organization conducting the M&S. 
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5. Additional Uses of the  
Predictive Capability Maturity Model 

In this section, we suggest additional ways that the PCMM can be used and propose a method for 
the aggregation of scores in the PCMM table should that kind of information be desired. We also 
point out that the PCMM is only one of many factors that contribute to risk-informed decision 
making. 

5.1  Requirements for Modeling and Simulation Maturity 

After an objective assessment of M&S maturity has been made using the PCMM table, the 
completed PCMM table, as described in Section 4, can be used to specify the project maturity 
requirements for each element in the table. Six project maturity requirements can be specified, 
one for each element in the table. Project maturity requirements may be a result of, for example, 
system qualification or regulatory requirements, or they may simply be progress requirements for 
the development of an M&S capability. For this exercise, the essential question to ask for each 
element is, what should the appropriate level of maturity be for my intended use of the M&S 
activity? For example, a given element in the table has been assessed at a maturity level of 2. Is 
that an appropriate level for this project or should it be at a higher level? Although we have not 
discussed this issue, it is obvious that the costs, both in terms of time and resources, increase 
significantly as higher levels of maturity are attained. To determine the project maturity 
requirements, one uses the same descriptors in Table 3 that were used to complete the PCMM 
table in Section 4. For this second pass using Table 3, we consider the descriptors to be project 
maturity requirements. 

Table 4 depicts the results of specifying project maturity requirements for each of the assessed 
elements discussed in Section 4. The designator “Required” is used to indicate the project 
maturity requirement for each element. The scores for the project maturity requirements in this 
example are [2, 2, 1, 2, 2, 3]. 

As can be seen in Table 4, the values are color coded and have the following meanings:   

• Green – The assessment meets or exceeds the requirement. 

• Yellow – The assessment does not meet the requirement by one level or less. 

• Pink – The assessment does not meet the requirement by two levels or less. 

• Red – The assessment does not meet the requirement by three levels or less. 
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 Table 4: Example of PCMM Table Assessment and Project Maturity Requirements 

MATURITY 

 
ELEMENT 

Maturity 
Level 0 

Maturity 
Level 1 

Maturity 
Level 2 

Maturity 
Level 3 

Representation 
and Geometric 

Fidelity 

  

Assessed 

 

Required 

 

Physics and 
Material Model 

Fidelity 

  Assessed 

Required 

 

Code 
Verification 

 Assessed 

Required 

  

Solution 
Verification 

Assessed  Required  

Model 
Validation 

 Assessed Required  

Uncertainty 
Quantification 
and Sensitivity 

Analysis 

 

Assessed 

   

Required 

 

Some examples of the useful benefits of comparisons of M&S maturity and M&S project 
maturity requirements, as shown in Table 4, follow. 

• To construct Table 4, one must have already addressed the question, What are the project 
requirements for M&S maturity? In our experience, answering this question has proven 
difficult but quite useful in its own right. If this question is asked, we have found that it 
initiates conversations not only within the M&S customer’s organization (typically 
engineering design groups or decision makers) but also between the M&S developer and 
customer. We have found that this conversation is particularly important when the M&S 
customer is not the source of funding for the M&S effort. 

• Table 4 can be used as a project management tool to adjust resources for elements that 
are lagging in their progress to meet project schedule requirements. Note that some 
elements do not depend solely on computational or software issues. For example, the 
model validation element depends very heavily on capabilities and progress in 
experimental activities. In the ASC program, we have found that one of the most 
common and damaging difficulties is the technical and/or scheduling disconnection 
between the computational and experimental activities in validation. 
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5.2  Aggregation of PCMM Scores 

In Section 4, the description of the PCMM focused on the use of M&S for a particular 
engineering application. Situations can exist where PCMM scores will need to be aggregated into 
one score, such as the following: 

• Suppose one has obtained a set of scores for multiple subsystems within a system, each 
subsystem represented by six scores. The desire is to aggregate all of the scores for the 
multiple subsystems into a single score for all of the subsystems. Note that one may have 
the same aggregation request for any tier in the validation hierarchy. 

• Suppose one has obtained a set of scores for multiple systems of different design, and 
each system is represented by six scores. The desire is to aggregate all of the scores for 
the multiple systems into one score that would represent, in some sense, a single score for 
the collection of systems. 

Although we recognize that arguments may be made to compute PCMM aggregate scores, we 
strongly recommend that this not be done. The score assessed for each of the six M&S elements 
is an ordinal scale—the four levels of maturity constitute a total order because each pair of levels 
can be simply ordered. However, the six M&S elements cannot be collectively ordered in any 
way; they are apples and oranges. Each element is important and conceptually independent from 
each other element. If one argues that an average maturity of an M&S effort could be computed 
by simply taking the arithmetic mean of each of the six elements, the average value would have 
little meaning. The argument for using the average value would be analogous to someone 
claiming to compute the breaking strength of a chain by averaging the strength of each link in the 
chain. 

Even though we argue against any type of aggregation method, history has clearly shown that 
pressure to condense information for decision makers can be irresistible. Given this reality, we 
recommend a simple procedure that would aid in maintaining some of the key information in the 
individual PCMM scores. We recommend that a set of three scores always be computed and 
presented to the user of the PCMM when any aggregation of PCMM scores is computed. The 
scores consist of the minimum over all of the elements being aggregated, the average of all the 
elements, and the maximum of all the elements. This aggregation triple can be written as: 
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where n is the total number of individual PCMM scores that are being aggregated. We believe 
that keeping the worst score of all aggregated scores will call attention to the situation so that the 
decision maker can pursue the issue in more depth if desired. 

As an example, suppose that a system was made up of four subsystems. Assume each subsystem 
was assessed using the PCMM table discussed above, with the following result:  
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Using Eqs. (1) and (2), we compute the PCMM aggregate triple: 

  PCMM
! = 0.0,1.1,2.0[ ]  (3) 

 
Our example demonstrates what we have observed in preliminary use of the PCMM: there is 
commonly a very wide range of scores uncovered in assessments. 

5.3  Use of the PCMM in Risk-Informed Decision Making 
We have proposed that the PCMM should be narrowly focused so that it can be properly 
understood and correctly used by computational practitioners, experimentalists, project 
managers, decision makers, and policy makers. In Section 4.1, Purpose of the Predictive 
Capability Maturity Model, and Section 5.1, Requirements for Modeling and Simulation 
Maturity, we suggested some ways in which the PCMM could be used to assess progress, used as 
a project planning tool for both M&S and experimental activities, and used by consumers of 
M&S information. In the larger context, however, the PCMM is only one factor that contributes 
to risk-informed decision making for engineering systems. Figure 5 depicts a number of factors 
that could affect the risk-informed decision making for an engineering system. 
 

 
Figure 5: Factors Influencing Risk-informed Decision Making. 
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Figure 5 divides the factors into two major groups: technical issues and programmatic issues. 
Although not all factors are shown, it is seen that a number of diverse and complex factors are 
important in decision making. Sometimes individual technical factors are characterized fairly 
well. For example, required system performance and predicted system performance, say, for 
system reliability in normal operating conditions, might be mathematically characterized as a 
precisely known probability distribution. However, most of the factors in Fig. 5, particularly 
programmatic issues, are not characterized well, or at all. For example, it is commonly very 
difficult to estimate the consequences of poor system reliability on financial liability and future 
business opportunities. As depicted, there are interactions and trade-offs between the two groups 
of issues and within each group. Managers and decision makers must weigh the importance all 
factors, try to understand the complex interactions of factors, and decide on the trade-offs that 
must be made to optimize their view of “success.” Of course, “success” can mean widely varying 
things to the various participants and stakeholders involved. 
 
Our purpose in constructing and discussing Fig. 5 is to make it clear how the PCMM is but one 
factor in a complex set of factors. We have argued in this report that the assessment of M&S 
maturity is a relatively new factor that should be explicitly included in risk-informed decision 
making. In addition, we have argued that the assessment should be clearly separated from other 
important factors in decision making. If this is not done, there will be, at best, a convolution of 
factors causing confusion and miscommunication and, at worst, a contortion of factors intended 
to satisfy various agendas of individuals and organizations involved. 
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